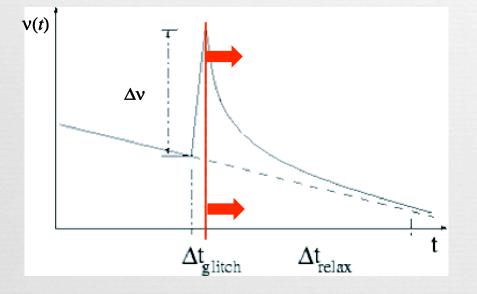
Glitch recovery and rotational equilibrium in pulsars

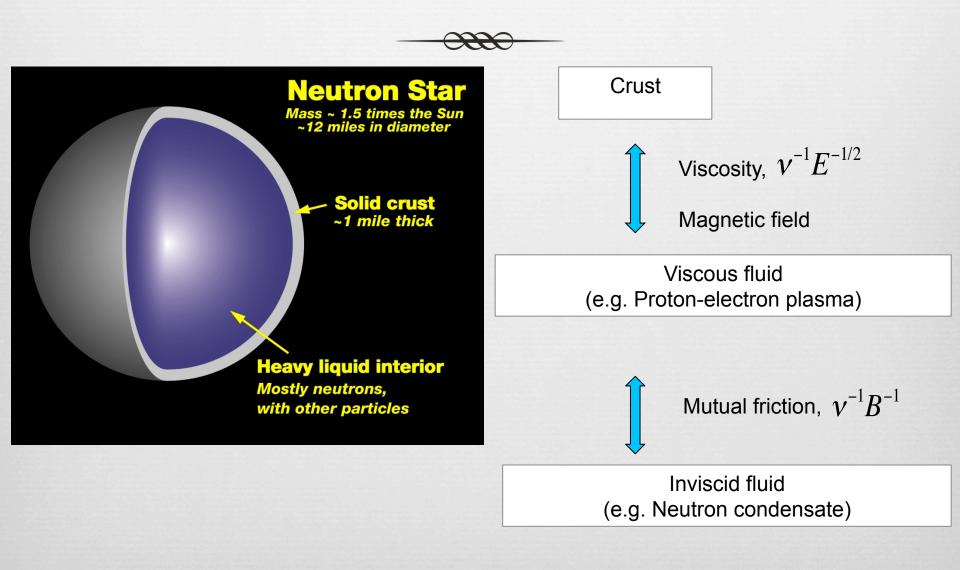
Aspen


January 23rd 2013

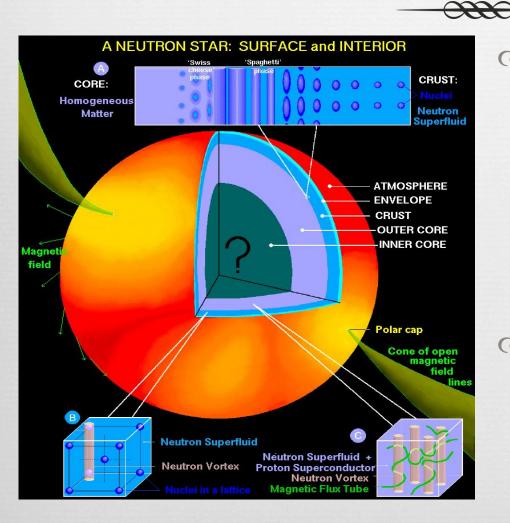
Anthony van Eysden

NORDITA

Glitch recovery

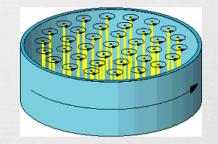

R Two stages:

- Spin up (< minute)
- Recovery (~days to weeks to ??)


A Interested in long term behavior (recovery)

R What can we learn about the interior?

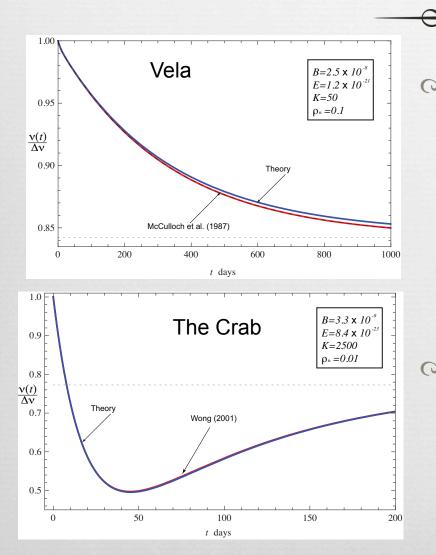
Hydrodynamic recovery models



Vortex physics

R Vortices

-> mutual friction

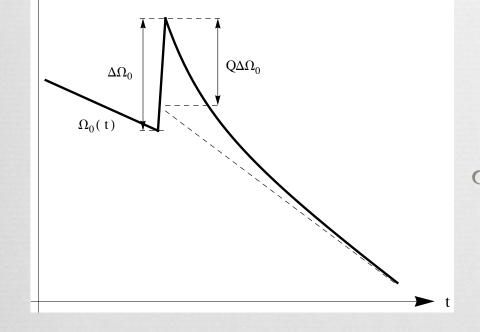

R Pinning

-> thermal creep (Link 2012)

 $B \propto e^{-A(1-\Delta\omega/\Delta\omega_c)/T}$

Fitting to timing data

(van Eysden & Melatos 2010)

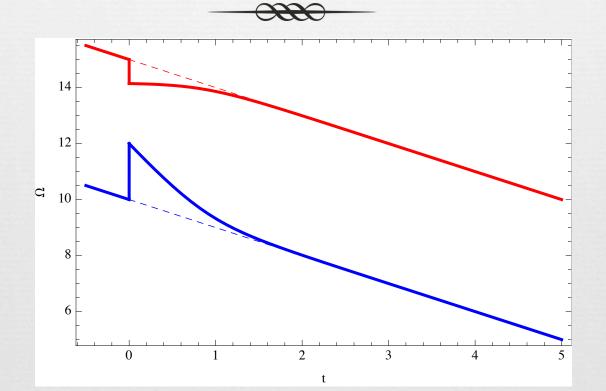

- Viscosity (*E*)
- Mutual friction (B)
- Crust Fraction (K)
 - Charged component density fraction (ρ_n)

Model also sheds light on recovery physics

- Quasi exponential
- Overshoot

Challenges for hydrodynamic models

Recovery typically fitted to



Ω

$$v(t) = \sum_{n} \Delta v_{n} e^{-t/t_{n}} + \Delta v_{p} + \Delta v_{p} t$$

 Permanent increase in frequency and frequency derivative

Theory (Link 2012)

Hydrodynamic models always recover completely!
Q always unity!

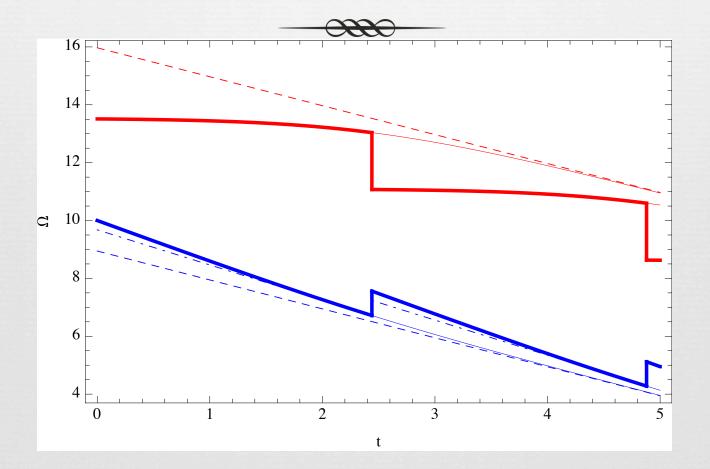
Superfluid reservoir?

Rearch Part of the star decoupled during spin-down

Injects angular momentum during glitch (permanent increase in frequency)

Increases moment of inertia (permanent increase in frequency derivative)

Real But what is this component?


No rotational equilibrium?

Glitches never recover completely?

Glitch	Date	MJD	CM	t_4	t_3	t_2	t_1	$\Delta \nu_4$	$\Delta \nu_3$	$\Delta \nu_2$	$\Delta \nu_1$	$\Delta \nu_p$	$\Delta \nu$	Ref.
				-	d		-		-	-	μHz	P		
1	28-Feb-1969	40280				10	120			0.052	0.467	25.6	26.2	1
2	29-Aug-1971	41192				4	94			0.036	0.30	22.6	22.9	1
3	09-Sep-1975	42664				4	35			0.01	0.079	22.2	22.2	1
4	13-Jul-1978	43693				6	75			0.083	0.389	33.8	34.3	1
5	10-Oct-1981	44888				6	14			0.01	0.024	12.7	12.7	1
	10-Oct-1981	44889				1.6	233			0.092	2.26	10.5	12.8	2
6	10-Aug-1982	45192				3	21.5			0.057	0.126	22.8	23.0	1
	10-Aug-1982	45192				3.2	60			0.23	0.79		004	2
7	12-Jul-1985	46258				6.5	332			0.066	2.76	Q=().024	2
	12-Jul-1985					6.8				0.165				3
8	24-Dec-1988	47519	*		0.4	4	96		0.108	0.086	0.376	19.7	20.2	4
	24-Dec-1988	47520	*		0.73	6.97	707		0.092	0.083	6.74	13.3	20.2	5
9	20-Jul-1991	48458	*		0.56	5.94	254	-	0.255	0.169	2.84		0 0 4	5
	20-Jul-1991		*		0.59	4.9	49		0.317	0.152	0.231	Q=	0.34	3
10	26-Jul-1994	49560	*									9.6	9.6	5
	26-Jul-1994		*											3
11	27-Aug-1994	49592	*			1.59	15			0.024	0.027	2.1	2.2	5
	27-Aug-1994		*			6					0.032			3
12	13-Oct-1996	50370					916				14.8	9.1	23.9	6
13	16-Jan-2000	51559	*	0.0008	0.53	3.29	19	0.02	0.31	0.193	0.236	34.5	35	7
14	07-Jul-2004	53193	*	0.0007	0.23	2.1	26.14	54	0.21	0.13	0.16	22.8	77.3	8
[1] (Co	ordes et al. 198	8), [2] (N	fcCullo	och et al.	1987),		anagan	1996),	[4] (Flar	agan 19	990), [5]	(McCull	och 1996)	

[6] (Wang et al. 2000), [7] (Dodson et al. 2002), [8] (Dodson et al. 2007)

Non-equilibrium model

Gives apparent non-zero Q

Questions

R Is there a need for a reservoir?

Real How do you get such long recovery times?

Conclusions

Need to take a careful look at recoveries – are pulsars in rotational equilibrium between glitches?

Vela shows quasi-periodic behavior – 'reservoir recycling'? Special case?

R Input welcome!